Rainy screens: Collecting rainy datasets, indoors

03/10/2020
by   Horia Porav, et al.
0

Acquisition of data with adverse conditions in robotics is a cumbersome task due to the difficulty in guaranteeing proper ground truth and synchronising with desired weather conditions. In this paper, we present a simple method - recording a high resolution screen - for generating diverse rainy images from existing clear ground-truth images that is domain- and source-agnostic, simple and scales up. This setup allows us to leverage the diversity of existing datasets with auxiliary task ground-truth data, such as semantic segmentation, object positions etc. We generate rainy images with real adherent droplets and rain streaks based on Cityscapes and BDD, and train a de-raining model. We present quantitative results for image reconstruction and semantic segmentation, and qualitative results for an out-of-sample domain, showing that models trained with our data generalize well.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro