Report on Two-Step Knowledge-Aided Iterative ESPRIT Algorithm

03/21/2017
by   R. C. de Lamare, et al.
0

In this work, we propose a subspace-based algorithm for direction-of-arrival (DOA) estimation, referred to as two-step knowledge-aided iterative estimation of signal parameters via rotational invariance techniques (ESPRIT) method (Two-Step KAI-ESPRIT), which achieves more accurate estimates than those of prior art. The proposed Two-Step KAI-ESPRIT improves the estimation of the covariance matrix of the input data by incorporating prior knowledge of signals and by exploiting knowledge of the structure of the covariance matrix and its perturbation terms. Simulation results illustrate the improvement achieved by the proposed method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro