Road Segmentation Using CNN with GRU
This paper presents an accurate and fast algorithm for road segmentation using convolutional neural network (CNN) and gated recurrent units (GRU). For autonomous vehicles, road segmentation is a fundamental task that can provide the drivable area for path planning. The existing deep neural network based segmentation algorithms usually take a very deep encoder-decoder structure to fuse pixels, which requires heavy computations, large memory and long processing time. Hereby, a CNN-GRU network model is proposed and trained to perform road segmentation using data captured by the front camera of a vehicle. GRU network obtains a long spatial sequence with lower computational complexity, comparing to traditional encoder-decoder architecture. The proposed road detector is evaluated on the KITTI road benchmark and achieves high accuracy for road segmentation at real-time processing speed.
READ FULL TEXT