Road Segmentation Using CNN with GRU

04/14/2018
by   Yecheng Lyu, et al.
0

This paper presents an accurate and fast algorithm for road segmentation using convolutional neural network (CNN) and gated recurrent units (GRU). For autonomous vehicles, road segmentation is a fundamental task that can provide the drivable area for path planning. The existing deep neural network based segmentation algorithms usually take a very deep encoder-decoder structure to fuse pixels, which requires heavy computations, large memory and long processing time. Hereby, a CNN-GRU network model is proposed and trained to perform road segmentation using data captured by the front camera of a vehicle. GRU network obtains a long spatial sequence with lower computational complexity, comparing to traditional encoder-decoder architecture. The proposed road detector is evaluated on the KITTI road benchmark and achieves high accuracy for road segmentation at real-time processing speed.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset