Scalable Deep Learning Logo Detection

03/30/2018
by   Hang Su, et al.
0

Existing logo detection methods usually consider a small number of logo classes and limited images per class with a strong assumption of requiring tedious object bounding box annotations, therefore not scalable to real-world dynamic applications. In this work, we tackle these challenges by exploring the webly data learning principle without the need for exhaustive manual labelling. Specifically, we propose a novel incremental learning approach, called Scalable Logo Self-co-Learning (SL^2), capable of automatically self-discovering informative training images from noisy web data for progressively improving model capability in a cross-model co-learning manner. Moreover, we introduce a very large (2,190,757 images of 194 logo classes) logo dataset "WebLogo-2M" by an automatic web data collection and processing method. Extensive comparative evaluations demonstrate the superiority of the proposed SL^2 method over the state-of-the-art strongly and weakly supervised detection models and contemporary webly data learning approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro