SelfFed: Self-supervised Federated Learning for Data Heterogeneity and Label Scarcity in IoMT
Self-supervised learning in federated learning paradigm has been gaining a lot of interest both in industry and research due to the collaborative learning capability on unlabeled yet isolated data. However, self-supervised based federated learning strategies suffer from performance degradation due to label scarcity and diverse data distributions, i.e., data heterogeneity. In this paper, we propose the SelfFed framework for Internet of Medical Things (IoMT). Our proposed SelfFed framework works in two phases. The first phase is the pre-training paradigm that performs augmentive modeling using Swin Transformer based encoder in a decentralized manner. The first phase of SelfFed framework helps to overcome the data heterogeneity issue. The second phase is the fine-tuning paradigm that introduces contrastive network and a novel aggregation strategy that is trained on limited labeled data for a target task in a decentralized manner. This fine-tuning stage overcomes the label scarcity problem. We perform our experimental analysis on publicly available medical imaging datasets and show that our proposed SelfFed framework performs better when compared to existing baselines concerning non-independent and identically distributed (IID) data and label scarcity. Our method achieves a maximum improvement of 8.8 dataset. Further, our proposed method outperforms existing baselines even when trained on a few (10
READ FULL TEXT