Semi-Infinite Linear Regression and Its Applications

04/12/2021
by   Paz Fink Shustin, et al.
0

Finite linear least squares is one of the core problems of numerical linear algebra, with countless applications across science and engineering. Consequently, there is a rich and ongoing literature on algorithms for solving linear least squares problems. In this paper, we explore a variant in which the system's matrix has one infinite dimension (i.e., it is a quasimatrix). We call such problems semi-infinite linear regression problems. As we show, the semi-infinite case arises in several applications, such supervised learning and function approximation, and allows for novel interpretations of existing algorithms. We explore semi-infinite linear regression rigorously and algorithmically. To that end, we give a formal framework for working with quasimatrices, and generalize several algorithms designed for finite problem to the infinite case. Finally, we suggest the use of various sampling methods for obtaining an approximate solution.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset