Shapes Characterization on Address Event Representation Using Histograms of Oriented Events and an Extended LBP Approach

02/09/2018
by   Pablo Negri, et al.
0

Address Event Representation is a thriving technology that could change digital image processing paradigm. This paper proposes a methodology to characterize the shape of objects using the streaming of asynchronous events. A new descriptor that enhances spikes connectivity is associated with two oriented histogram based representations. This paper uses these features to develop both a non-supervised and a supervised multi-classification framework to recognize poker symbols from the Poker-DVS public dataset. The aforementioned framework, which uses a very limited number of events and a simple class modeling, yields results that challenge more sophisticated methodologies proposed by the state of the art. A feature family based on context shapes is applied to the more challenging 2015 Poker-DVS dataset with a supervised classifier obtaining an accuracy of 98.5 applied to the MNIST-DVS dataset yielding an accuracy of 94.6 digit recognition, for scales 4 and 8 respectively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro