Signature moments to characterize laws of stochastic processes

10/25/2018
by   Ilya Chevyrev, et al.
6

The normalized sequence of moments characterizes the law of any finite-dimensional random variable. We prove an analogous result for path-valued random variables, that is stochastic processes, by using the normalized sequence of signature moments. We use this to define a metric for laws of stochastic processes. This metric can be efficiently estimated from finite samples, even if the stochastic processes themselves evolve in high-dimensional state spaces. As an application, we provide a non-parametric two-sample hypothesis test for laws of stochastic processes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro