Stability revisited: new generalisation bounds for the Leave-one-Out

08/23/2016
by   Alain Celisse, et al.
0

The present paper provides a new generic strategy leading to non-asymptotic theoretical guarantees on the Leave-one-Out procedure applied to a broad class of learning algorithms. This strategy relies on two main ingredients: the new notion of L^q stability, and the strong use of moment inequalities. L^q stability extends the ongoing notion of hypothesis stability while remaining weaker than the uniform stability. It leads to new PAC exponential generalisation bounds for Leave-one-Out under mild assumptions. In the literature, such bounds are available only for uniform stable algorithms under boundedness for instance. Our generic strategy is applied to the Ridge regression algorithm as a first step.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset