Statistical Learning Aided Decoding of BMST of Tail-Biting Convolutional Code

02/26/2019
by   Xiao Ma, et al.
0

This paper is concerned with block Markov superposition transmission (BMST) of tail-biting convolutional code (TBCC). We propose a new decoding algorithm for BMST-TBCC, which integrates a serial list Viterbi algorithm (SLVA) with a soft check instead of conventional cyclic redundancy check (CRC). The basic idea is that, compared with an erroneous candidate codeword, the correct candidate codeword for the first sub-frame has less influence on the output of Viterbi algorithm for the second sub-frame. The threshold is then determined by statistical learning based on the introduced empirical divergence function. The numerical results illustrate that, under the constraint of equivalent decoding delay, the BMST-TBCC has comparable performance with the polar codes. As a result, BMST-TBCCs may find applications in the scenarios of the streaming ultra-reliable and low latency communication (URLLC) data services.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro