Stochastic Quasi-Newton Methods for Nonconvex Stochastic Optimization

07/05/2016
by   Xiao Wang, et al.
0

In this paper we study stochastic quasi-Newton methods for nonconvex stochastic optimization, where we assume that noisy information about the gradients of the objective function is available via a stochastic first-order oracle (SFO). We propose a general framework for such methods, for which we prove almost sure convergence to stationary points and analyze its worst-case iteration complexity. When a randomly chosen iterate is returned as the output of such an algorithm, we prove that in the worst-case, the SFO-calls complexity is O(ϵ^-2) to ensure that the expectation of the squared norm of the gradient is smaller than the given accuracy tolerance ϵ. We also propose a specific algorithm, namely a stochastic damped L-BFGS (SdLBFGS) method, that falls under the proposed framework. Moreover, we incorporate the SVRG variance reduction technique into the proposed SdLBFGS method, and analyze its SFO-calls complexity. Numerical results on a nonconvex binary classification problem using SVM, and a multiclass classification problem using neural networks are reported.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro