Structural restrictions in local causal discovery: identifying direct causes of a target variable
We consider the problem of learning a set of direct causes of a target variable from an observational joint distribution. Learning directed acyclic graphs (DAGs) that represent the causal structure is a fundamental problem in science. Several results are known when the full DAG is identifiable from the distribution, such as assuming a nonlinear Gaussian data-generating process. Often, we are only interested in identifying the direct causes of one target variable (local causal structure), not the full DAG. In this paper, we discuss different assumptions for the data-generating process of the target variable under which the set of direct causes is identifiable from the distribution. While doing so, we put essentially no assumptions on the variables other than the target variable. In addition to the novel identifiability results, we provide two practical algorithms for estimating the direct causes from a finite random sample and demonstrate their effectiveness on several benchmark datasets. We apply this framework to learn direct causes of the reduction in fertility rates in different countries.
READ FULL TEXT