TensorLog: Deep Learning Meets Probabilistic DBs

07/17/2017
by   William W. Cohen, et al.
0

We present an implementation of a probabilistic first-order logic called TensorLog, in which classes of logical queries are compiled into differentiable functions in a neural-network infrastructure such as Tensorflow or Theano. This leads to a close integration of probabilistic logical reasoning with deep-learning infrastructure: in particular, it enables high-performance deep learning frameworks to be used for tuning the parameters of a probabilistic logic. Experimental results show that TensorLog scales to problems involving hundreds of thousands of knowledge-base triples and tens of thousands of examples.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset