The Geometry of Generalized Binary Search

10/22/2009
by   Robert D. Nowak, et al.
0

This paper investigates the problem of determining a binary-valued function through a sequence of strategically selected queries. The focus is an algorithm called Generalized Binary Search (GBS). GBS is a well-known greedy algorithm for determining a binary-valued function through a sequence of strategically selected queries. At each step, a query is selected that most evenly splits the hypotheses under consideration into two disjoint subsets, a natural generalization of the idea underlying classic binary search. This paper develops novel incoherence and geometric conditions under which GBS achieves the information-theoretically optimal query complexity; i.e., given a collection of N hypotheses, GBS terminates with the correct function after no more than a constant times log N queries. Furthermore, a noise-tolerant version of GBS is developed that also achieves the optimal query complexity. These results are applied to learning halfspaces, a problem arising routinely in image processing and machine learning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro