Training Sparse Neural Networks using Compressed Sensing

08/21/2020
by   Jonathan W. Siegel, et al.
14

Pruning the weights of neural networks is an effective and widely-used technique for reducing model size and inference complexity. We develop and test a novel method based on compressed sensing which combines the pruning and training into a single step. Specifically, we utilize an adaptively weighted ℓ^1 penalty on the weights during training, which we combine with a generalization of the regularized dual averaging (RDA) algorithm in order to train sparse neural networks. The adaptive weighting we introduce corresponds to a novel regularizer based on the logarithm of the absolute value of the weights. Numerical experiments on the CIFAR-10 and CIFAR-100 datasets demonstrate that our method 1) trains sparser, more accurate networks than existing state-of-the-art methods; 2) can also be used effectively to obtain structured sparsity; 3) can be used to train sparse networks from scratch, i.e. from a random initialization, as opposed to initializing with a well-trained base model; 4) acts as an effective regularizer, improving generalization accuracy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro