Transferring Knowledge from a RNN to a DNN

04/07/2015
by   William Chan, et al.
0

Deep Neural Network (DNN) acoustic models have yielded many state-of-the-art results in Automatic Speech Recognition (ASR) tasks. More recently, Recurrent Neural Network (RNN) models have been shown to outperform DNNs counterparts. However, state-of-the-art DNN and RNN models tend to be impractical to deploy on embedded systems with limited computational capacity. Traditionally, the approach for embedded platforms is to either train a small DNN directly, or to train a small DNN that learns the output distribution of a large DNN. In this paper, we utilize a state-of-the-art RNN to transfer knowledge to small DNN. We use the RNN model to generate soft alignments and minimize the Kullback-Leibler divergence against the small DNN. The small DNN trained on the soft RNN alignments achieved a 3.93 WER on the Wall Street Journal (WSJ) eval92 task compared to a baseline 4.54 WER or more than 13

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro