Transformer with Selective Shuffled Position Embedding using ROI-Exchange Strategy for Early Detection of Knee Osteoarthritis

04/17/2023
by   Zhe Wang, et al.
16

Knee OsteoArthritis (KOA) is a prevalent musculoskeletal disorder that causes decreased mobility in seniors. The lack of sufficient data in the medical field is always a challenge for training a learning model due to the high cost of labelling. At present, deep neural network training strongly depends on data augmentation to improve the model's generalization capability and avoid over-fitting. However, existing data augmentation operations, such as rotation, gamma correction, etc., are designed based on the data itself, which does not substantially increase the data diversity. In this paper, we proposed a novel approach based on the Vision Transformer (ViT) model with Selective Shuffled Position Embedding (SSPE) and a ROI-exchange strategy to obtain different input sequences as a method of data augmentation for early detection of KOA (KL-0 vs KL-2). More specifically, we fixed and shuffled the position embedding of ROI and non-ROI patches, respectively. Then, for the input image, we randomly selected other images from the training set to exchange their ROI patches and thus obtained different input sequences. Finally, a hybrid loss function was derived using different loss functions with optimized weights. Experimental results show that our proposed approach is a valid method of data augmentation as it can significantly improve the model's classification performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset