Uniform Inference for Cointegrated Vector Autoregressive Processes
Uniformly valid inference for cointegrated vector autoregressive processes has so far proven difficult due to certain discontinuities arising in the asymptotic distribution of the least squares estimator. We show how asymptotic results from the univariate case can be extended to multiple dimensions and how inference can be based on these results. Furthermore, we show that the novel instrumental variable procedure proposed by [20] (IVX) yields uniformly valid confidence regions for the entire autoregressive matrix. The results are applied to two specific examples for which we verify the theoretical findings and investigate finite sample properties in simulation experiments.
READ FULL TEXT