Using CODEQ to Train Feed-forward Neural Networks

02/03/2010
by   Mahamed G. H. Omran, et al.
0

CODEQ is a new, population-based meta-heuristic algorithm that is a hybrid of concepts from chaotic search, opposition-based learning, differential evolution and quantum mechanics. CODEQ has successfully been used to solve different types of problems (e.g. constrained, integer-programming, engineering) with excellent results. In this paper, CODEQ is used to train feed-forward neural networks. The proposed method is compared with particle swarm optimization and differential evolution algorithms on three data sets with encouraging results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro