Variational regularisation for inverse problems with imperfect forward operators and general noise models

05/28/2020
by   Leon Bungert, et al.
0

We study variational regularisation methods for inverse problems with imperfect forward operators whose errors can be modelled by order intervals in a partial order of a Banach lattice. We carry out analysis with respect to existence and convex duality for general data fidelity terms and regularisation functionals. Both for a-priori and a-posteriori parameter choice rules, we obtain convergence rates of the regularized solutions in terms of Bregman distances. Our results apply to fidelity terms such as Wasserstein distances, f-divergences, norms, as well as sums and infimal convolutions of those.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro