Zero-Shot Learning via Class-Conditioned Deep Generative Models

11/15/2017
by   Wenlin Wang, et al.
0

We present a deep generative model for learning to predict classes not seen at training time. Unlike most existing methods for this problem, that represent each class as a point (via a semantic embedding), we represent each seen/unseen class using a class-specific latent-space distribution, conditioned on class attributes. We use these latent-space distributions as a prior for a supervised variational autoencoder (VAE), which also facilitates learning highly discriminative feature representations for the inputs. The entire framework is learned end-to-end using only the seen-class training data. The model infers corresponding attributes of a test image by maximizing the VAE lower bound; the inferred attributes may be linked to labels not seen when training. We further extend our model to a (1) semi-supervised/transductive setting by leveraging unlabeled unseen-class data via an unsupervised learning module, and (2) few-shot learning where we also have a small number of labeled inputs from the unseen classes. We compare our model with several state-of-the-art methods through a comprehensive set of experiments on a variety of benchmark data sets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro