Zeroth-order (Non)-Convex Stochastic Optimization via Conditional Gradient and Gradient Updates

In this paper, we propose and analyze zeroth-order stochastic approximation algorithms for nonconvex and convex optimization. Specifically, we propose generalizations of the conditional gradient algorithm achieving rates similar to the standard stochastic gradient algorithm using only zeroth-order information. Furthermore, under a structural sparsity assumption, we first illustrate an implicit regularization phenomenon where the standard stochastic gradient algorithm with zeroth-order information adapts to the sparsity of the problem at hand by just varying the step-size. Next, we propose a truncated stochastic gradient algorithm with zeroth-order information, whose rate depends only poly-logarithmically on the dimensionality.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro