Brain-Inspired Model for Incremental Learning Using a Few Examples

02/27/2020
by   Ali Ayub, et al.
1

Incremental learning attempts to develop a classifier which learns continuously from a stream of data segregated into different classes. Deep learning approaches suffer from catastrophic forgetting when learning classes incrementally. We propose a novel approach to incremental learning inspired by the concept learning model of the hippocampus that represents each image class as centroids and does not suffer from catastrophic forgetting. Classification of a test image is accomplished using the distance of the test image to the n closest centroids. We further demonstrate that our approach can incrementally learn from only a few examples per class. Evaluations of our approach on three class-incremental learning benchmarks: Caltech-101, CUBS-200-2011 and CIFAR-100 for incremental and few-shot incremental learning depict state-of-the-art results in terms of classification accuracy over all learned classes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset