Continual Learning of Visual Concepts for Robots through Limited Supervision

01/26/2021
by   Ali Ayub, et al.
0

For many real-world robotics applications, robots need to continually adapt and learn new concepts. Further, robots need to learn through limited data because of scarcity of labeled data in the real-world environments. To this end, my research focuses on developing robots that continually learn in dynamic unseen environments/scenarios, learn from limited human supervision, remember previously learned knowledge and use that knowledge to learn new concepts. I develop machine learning models that not only produce State-of-the-results on benchmark datasets but also allow robots to learn new objects and scenes in unconstrained environments which lead to a variety of novel robotics applications.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro