Long-Term Autonomous Ocean Monitoring with Streaming Samples

06/11/2023
by   Weizhe Chen, et al.
0

In the autonomous ocean monitoring task, the sampling robot moves in the environment and accumulates data continuously. The widely adopted spatial modeling method - standard Gaussian process (GP) regression - becomes inadequate in processing the growing sensing data of a large size. To overcome the computational challenge, this paper presents an environmental modeling framework using a sparse variant of GP called streaming sparse GP (SSGP). The SSGP is able to handle streaming data in an online and incremental manner, and is therefore suitable for long-term autonomous environmental monitoring. The SSGP summarizes the collected data using a small set of pseudo data points that best represent the whole dataset, and updates the hyperparameters and pseudo point locations in a streaming fashion, leading to high-quality approximation of the underlying environmental model with significantly reduced computational cost and memory demand.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset